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ABSTRACT
Brain/Body Computer Interface (BBCI) technology facilitates re-
search in human cognition and assistive technologies. BBCI ac-
quires and analyzes physiological signals from human body/brain
such as electroencephalography (EEG) to observe human physio-
logical states and potentially enable external control. BBCI de-
vices require accurate data acquisition systems with sufficient dy-
namic range for various brain/body signals. Also, embedded pro-
cessing is desirable for real-time interaction and flexible deploy-
ment. However, most off-the-shelf BBCI devices are very costly,
e.g. g.USBamp at $15K and do not offer embedded processing.
Hence, an open embedded device for BBCI acquisition and pro-
cessing is needed to foster the BBCI research.

This paper proposes EEGu2 as a portable embedded BBCI de-
vice. Based on a BeagleBone Black (BBB), EEGu2 integrates
a custom-designed cape including 2 PCBs: an acquisition board
for 16-channel 24-bit acquisition up to 1KHz sampling frequency
and a power board for wall charging and powering mobile oper-
ations. EEGu2 measurement shows a high acquisition accuracy
with 25dB signal-to-noise ratio and 0.785µV peak-to-peak input
referred noise. At maximum performance, the cape consumes 101.2
mW while BBB consumes 1850 mW. With two lithium batteries,
EEGu2 operates independently 12 hours.

We demonstrate the flexibility and portability of EEGu2 in the
context of Human-in-the-Loop Cyber-Physical Systems (HiLCPS)
that augments human interaction with physical world through BBCI.
The EEGu2 firmware is integrated into the HiLCPS Framework to
enable the location transparent access via the MATLAB interface.
EEGu2 empowers rapid embedded BBCI application deployment
and we show the flexibility of EEGu2 with a BCI Speller applica-
tion that acquires real-time EEG signals and infers the user spelling
based on Steady State Visually Evoked Potential.
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Figure 1: Body/Brain-Computer Interfaces

Body/Brain-Computer Interface (BBCI) is an emerging technol-
ogy enabling a class of applications in which computers monitor
human body and brain activity and interpret it as a feedback to hu-
man or an intent of control. The work in [1] uses BBCI to moni-
tor heart health by measuring electrocardiography (ECG). The re-
search in [2, 3] measures electroencephalography (EEG) to detect
the user attention level in the treatment of Attention Deficit Hyper-
activity Disorder (ADHD). BBCI also serves as an additional de-
gree of freedom in control to augment the user interaction with the
physical world. BBCI has been combined with assistive technolo-
gies in several contexts: operating prosthetic devices [4], brain-
controlled robot [5], typing through virtual keyboards [6] and play-
ing games [3].

Fig. 1 overviews an assistive application using BBCI. BBCI con-
tains both Data Acquisition (DAQ) and processing. BBCI senses
a variety of human physiological signals, including EEG, ECG,
electromyography (EMG), electrooculography (EOG), which mea-
sure electrical signals emitted by the brain, the heart, skeleton mus-
cles and eyes respectively. BBCI requires very high resolution and
low noise DAQ for very small bio-signals such as EEG from 1 to
100µV. However, to measure EEG and larger bio-signal such as
EMG (up to 10mV) at the same time, a sufficient dynamic range is
needed.

DAQ outputs digitized bio-signals for further processing. BBCI
algorithms identify different patterns of body and brain activity,
each being associated with a human intention to control assistive
devices such as a prosthetic arm or a wheelchair. Many current
BBCI applications run on a personal computer, which is cumber-
some for mobile operations. Hence, a portable (battery powered)
embedded BBCI device with both acquisition and processing inte-
grated is desired.

Developing an embedded BBCI application poses many chal-
lenges. One challenge is the lack of portable embedded BBCI
devices with acquisition and sufficient processing capacity. Most
commercial off-the-shelf products from companies like Emotive,
g.Tec, Neurosky only provides DAQ and relies on an additional
computer for signal processing. Moreover, the commercial DAQ
products are mostly expensive, e.g. g.USBamp at around $15k.
Alternatively, open source DAQ platform such as OpenBCI [7] is
equipped with on-board micro-controller (50MHz), however, not
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accessible to users. Another challenge is the complex algorithm
development. Algorithm designers prototype BBCI application us-
ing tools such as MATLAB to benefit from its signal processing in-
tensive algorithm design environment. However, the gap between
MATLAB prototype and embedded deployment challenges algo-
rithm designers with significant effort and embedded knowledge
for manual conversion.

To address the above challenges, we propose EEGu2: an afford-
able and portable (battery powered) embedded system for both bio-
signal acquisition and embedded processing. The contribution of
this paper is three-fold:

1. BBCI Acquisition and Processing Platform. As a modular
design, EEGu2 integrates a customized cape (PCB) stacking
on top of BeagleBone Black (BBB) for 16-channel 24-bit
bio-signal acquisition, embedded processing, and intelligent
power management for mobile operation (< 12hours).

2. HW Type and Location Independent Access for Develop-
ment. EEGu2 firmware implements a canonical DAQ HW
API and the underlying DAQ kernel driver. The firmware is
further integrated into the HiLCPS Framework [8] to enable
hardware and location transparent access via the MATLAB
interface.

3. Enabling Rapid BBCI Application Development. Through
domain-specific synthesis, the prototyped MATLAB BBCI
algorithm can be automatically deployed onto embedded sys-
tems (e.g. EEGu2) with seamless integration of the firmware
libraries.

EEGu2 empowers a rapid embedded BBCI application deploy-
ment with close-to-sensing processing. This paper demonstrates
this flexibility of EEGu2 with a Brain-Computer Interface (BCI)
Speller application in the context of HiLCPS that augments human
interaction with the physical world.

This paper is structured as follows: Section 2 describes the EEGu2
architecture design, firmware and framework integration. Section 3
shows system design quality and demonstrates a BCI Speller appli-
cation. Section 4 overviews related work of existing BBCI devices.
Section 5 concludes the paper.

2. EEGU2: EMBEDDED BBCI

Figure 2: EEGu2

Fig. 2 depicts an EEGu2
with the upper cover re-
moved. EEGu2 inte-
grates a BeagleBone Black
(BBB) as the base pro-
cessing element. BBB
Rev.C comprises a pow-
erful AM3358 processor
based on ARM Cortex-A8
(1GHz), 2x Programmable
Real-time Unit (PRU), 512MB
DDR3 (800MHz x 16bit) and 4GB on-board storage using eMMC.
While offering low power embedded processing, BBB provides
plenty of I/O and peripherals interfaces, such as SPI (interfacing
acquisition board), USB (WiFi dongle), etc.

On top of BBB, EEGu2 contains a customized acquisition (DAQ)
board equipped with 2x ADS1299 chips [9], low noise, 24 bit,
2x8 channel analog front-end (see Section 2.1.1). EEGu2 is de-
signed to be portable with two low-cost lithium-ion cell phone bat-
tery installed. A customized power board provides power manage-
ment, including powering all circuitry and battery charging (see
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Figure 3: Architecture Overview

Section 2.1.2). The analog/digital power and signals are strictly
isolated to avoid polluting bio-signals (see Section 2.1.3). A de-
tachable 3D printed case provides the mechanical support for inter-
nal circuit boards (see Section 2.1.4). EEGu2 firmware implements
the DAQ kernel driver for real-time acquisition and a software li-
brary providing canonical DAQ HW API (see Section 2.2). The
firmware is further integrated into the HiLCPS Framework [10] as
a DAQ backend, which enables transparent access from the MAT-
LAB interface and automated embedded deployment from MAT-
LAB application to EEGu2 (see Section 2.3).

2.1 EEGu2 Architecture
Fig. 3 overviews the architecture of EEGu hardware design. The

power board (in the upper dash box) provides digital power 5V to
BBB (bottom left) and analog power to the DAQ board (in the bot-
tom right dash box). The vertical double line separates the digital
circuit island from the analog circuit island to avoid signal interfer-
ence. Both power lines and signal lines across the analog/digital
border are isolated. From bottom right human to bottom left BBB,
body/brain signals go through the protection circuit and get digi-
tized by 16-channel ADCs. The signal samples are sent to BBB
over SPI through proper isolation. BBB can either run the BBCI
application locally or stream samples over WiFi to a computer for
processing.

2.1.1 DAQ Board
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Fig. 4 and Fig. 6 depict the
physical board and conceptual
signal flow between components.
Human bio-signals sensed from
passive electrodes go through
protection circuit to the central
analog front end (AFE). All chan-
nel are configured single-ended.
The protection circuit (IEC60601
standards [11]) limits the cur-
rent flow to the patient. AFE
comprises two ADS1299 chips
that support 16 channel acqui-
sition. Each ADS1299 con-
tains programmable gain ampli-
fier (up to 24x) and 24-bit delta-
sigma analog-to-digital convert-
ers (ADC). This high resolution ADC is necessary for sensing EEG
signal (around 10µV). The dynamic range is ±4.5V at the gain of
1 and ±187.5mV at the gain of 24. Even with the finest gain of
24, ±187.5mV is a large dynamic range that allows mixed bio-
signals (e.g. EEG, EMG) measurement and tolerates high noise
level without ADC saturation. The sampling frequency of ADC
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Figure 6: EEGu2 DAQ Cape Design

can be configured from 250 samples per second (SPS) to 16kSPS.
Also, ADS1299 is optimized for bio-signal sensing offering lead-
off detection, bias sensing, and bias drive amplifier as the right leg
drive [9].

The cape reads samples from AFE and streams it to BBB via
SPI. To avoid introducing digital noise to ADC, all digital signals
between BBB and AFE are isolated by ADuM6401 isolators (each
with 4 channels). Each ADS1299 requires 2 ADuM6401 for SPI
and control lines respectively.

2.1.2 Power Board
Fig. 7 illustrates the EEGu2 power board that supports mobile

operation with battery and wall charging. The power board con-
tains a BQ24172 power management IC (PMIC) that takes 12V in-
put from an adapter connected to the wall outlet. The PMIC outputs
the 7.6V rail and charges two lithium batteries (Samsung Galaxy
Note 4 battery, 3200mAh, 3.8V) with LED status indicator. Those
two batteries in series offer 7.6V. The system buck regulates 7.6V
to 5V that goes to the PMIC on BBB and powers BBB. Several
low-dropout (LDO) regulate 5V to 3.3V and±2.5V to DAQ board.
The power board is mounted on the DAQ board through both power
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Figure 7: Power Board

connectors.

2.1.3 Power and Signal Isolation
Fig. 5 illustrates the power and signal isolation to protect the

ADC from digital noise. SPI and GPIOs are isolated when crossing
the analog/digital border. Also, the 5V power rail from the system
buck to the analog island is isolated by a transformer rectifier.

All power rails contain several levels of voltage regulation with
the trade-off between noise and efficiency (listed in Table 1). A
high efficient power buck drives both BBB and DAQ board. How-
ever, the buck must be isolated (via transformer rectifier) due to its
high switching noise (65KHz) and ripples that could pollute very
small sensed signals (e.g. EEG). LDOs further regulate the power
with much less noise and therefore reside in analog island. The
result of EEGu2 power consumption is reported in Section 3.1.1.

Component Noise Efficiency
System Buck TPS562209 high 93% @5V, 350mA

Transformer Rectifier SN6501 n/a 53% @10mA
LDO TPS76333 low 65.14% @7.6mA
LDO TPS76325 low 74.77% @7.6mA

Charge Pump TPS60403 n/a 95% @10mA

Table 1: Voltage Regulation Noise and Efficiency

2.1.4 Mechanical Enclosure
Fig. 8 shows the 3D printed acrylic enclosure that encapsulates

the BBB, the cape and batteries. BBB is screwed on the enclosure
for high mechanical stability. Fig. 8b shows the DAQ board hori-
zontally stacking over BBB and the power board (front) vertically
connected to the DAQ board for saving space. The batteries can
be easily slid in and out for replacement. The enclosure selectively
exposes a translucent power button, an Ethernet port, a power jack
and a USB port for WiFi dongle. For user’s convenience, the en-
closure has a belt clip on the side for wearable BBCI applications.

(a) Front View
(b) Side View

Figure 8: EEGu2 3D Printed Enclosure
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2.2 EEGu2 DAQ Firmware

The EEGu2 firmware interfaces with the ADS1299 chips (for
control and data) and provides an abstracted interface to the user
program. An initial approach was based on a user-level driver,
which however missed deadlines and lost samples (see analysis in
Section 3.2.1)). Fig. 9 overviews our more robust version, with a
kernel-level driver for SPI interaction and a virtual file system in-
terface to the user level.

The DAQ kernel driver is based on Industrial I/O Subsystem
(IIO) [12]. From bottom to top in Fig. 9, the data ready (DRDY)
signal from ADS1299 is an interrupt triggering two-level interrupt
handling. The HW interrupt service routine (ISR) invokes the higher
level IIO trigger ISR to read samples from the chip via SPI in a sep-
arate kernel thread. All channel samples are interleaved and pushed
into the tail of IIO circular buffer.

The kernel driver interfaces with user programs through virtual
file systems (VFS). A set of sysfs character device files provides
access to the IIO buffer and driver configurations including trig-
ger registration, channel gain, sampling frequency and buffer size.
Listing 1 shows an example of driver usage. A file descriptor is cre-
ated by opening the character device file of the IIO buffer. Then the
program reads samples from the file descriptor (head of IIO buffer)
upon the data availability using polling. Note the polling frequency
here is not critical in the result of the driver data buffering.

2.3 HiLCPS Framework Integration
Our work in [8] proposes HiLCPS Framework to expedite the

development of embedded HiLCPS applications that augment user
interaction with the physical world via BBCI. Our framework pro-
vides unified access to similar hardware types independent of their
location and domain-specific synthesis for automated embedded
deployments.

Listing 1: EEGu2 Kernel Driver Interface
1 char filename[] = "/dev/iio:device0";
2 char buffer[BUF_SIZE]; //buffer to store samples
3 int samplePerCh=1; //samples per channel to read
4 /* Create input file descriptor */
5 int input_fd = open(filename, O_RDONLY);
6 struct pollfd pfd = {
7 .fd = input_fd,
8 .events = POLLIN, // upon input
9 }; // error handling not shown for simplicity

10 poll(&pfd, 1, -1); // block til pfd data avail
11 // read samples of each channel
12 num = read(input_fd, buffer, samplePerCh * sizeof(int

));
13 ...
14 close (input_fd);
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Figure 10: DevClass Hardware Type and Location Transparency

To interface with various hardware and connectivity, HiLCPS
Framework groups similar HW types into classes, called DevClass.
Each DevClass is a class of HW types that implement the same se-
mantics of input and output. For example, DAQ is a DevClass of
acquisition systems while EEGu2 is one HW type of DAQ Dev-
Class. Fig. 10 depicts the structural composition of a DevClass.
The DevClass implements a unified HiLCPS API in MATLAB.
To support various HW types, a DevClass contains a set of HW-
specific Backends that implement the canonical HW API by inter-
facing with actual HW drivers. The HiLCPS API enables a portable
HiLCPS application design in that the application benefits from a
consistent access to different hardware types within the class.

The DevClass also provides location transparent access to hard-
ware regardless of its connectivity by using proxies. In compari-
son to the locally accessed HW2 (g.USBamp), the control of HW1
(EEGu2) is relayed through a pair of proxy-master and proxy-slave
to DevClass-Remote. The proxy-slave runs a dedicated thread lis-
tening to proxy-master (e.g. over TCP) and notifying DevClass-
Remote to execute the control by calling the Backend-HW1. On the
backward path, the DevClass-Remote reads HW1 data and sends it
back to DevClass through the proxies.

Listing 2 lists a snippet of DAQ HW API. The init() creates a
DAQ object (struct instance) and returns its pointer value as the
DAQ instance ID. Returning the object pointer value instead of
the pointer itself allows the function being called without requir-
ing the caller knowing the complex object definition. This design
simplifies interfacing DAQ HW API with MATLAB through MEX
(MATLAB executable for run-time access) and domain-specific syn-
thesis (code generation for embedded deployment) during the frame-
work integration. Other functions can refer to the DAQ object by
casting the DAQ instance ID back. Given the amount of the sam-
ples requested per channel, getSamples() function returns a sample
matrix, each column of which contains one channel samples.

In Fig. 11, the HiLCPS Framework realizes the following De-
vClasses: Data Acquisition (DAQ), Stimulus, Visualization. The
DAQ DevClass represents a class of DAQ devices sensing bio-
signal. Those DAQ devices share similar configurations such as

Listing 2: EEGu2 Firmware with DAQ HW API
1 // return initialized daq object pointer value
2 uint32_T init();
3 // store samplesPerCh*ActiveChNum sample matrix
4 // in preallocated data array (row major)
5 void getSamples(uint32_T pDAQ,uint32_T samplePerCh,

uint8_T ActiveChNum, int32_T* data);
6 // turn on/off DAQ channel at Config 1/0
7 void configCh(uint32_T pDAQ, uint16_T ChNum, uint8_T

Config);
8 // set DAQ sampling frequency
9 void setSamplingFreq(uint32_T pDAQ,uint16_T SampleFreq)

;
10 ...
11 // clean up
12 void end(uint32_T pDAQ);
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Figure 11: Rapid Embedded HiLCPS App Development

sampling rate and channel gain. EEGu2 is integrated into the frame-
work as one supported DAQ device type in that EEGu2 firmware
implements the DAQ HW API and serves as a DAQ DevClasses
Backend.

With the framework integration, designers using EEGu2 bene-
fit not only from the hardware and location transparent access in
MATLAB but also automated embedded deployment enabled by
domain-specific synthesis, as shown in Fig. 11. Algorithm design-
ers first design and validate the algorithm model in MATLAB and
rapidly expand it to the application with hardware-in-the-loop (us-
ing real sensors). The MATLAB application simply instantiates a
DevClass (e.g. DAQ) to access a class of hardware (e.g. EEGu2)
regardless of the hardware type and connectivity (e.g. TCP). In-
stead of worrying about hardware details (i.e. HW driver API),
designers can focus directly on developing the algorithm. Finally,
with domain-specific synthesis, the prototyped MATLAB applica-
tion is automatically synthesized down to an embedded implemen-
tation in C/C++ and seamlessly interfaces with DAQ Backend li-
brary. More details regarding automated process of embedded de-
ployment can be found in [10].

3. EXPERIMENTAL RESULTS
This section evaluates both the HW quality and firmware qual-

ity of EEGu2. We also demonstrate a use case of EEGu2 and the
benefit of framework integration using a BCI Speller application.

3.1 HW Quality
The EEGu2 HW quality is evaluated in two aspects: 1) power

consumption, 2) accuracy.

3.1.1 Power Consumption
As a portable, battery powered embedded system, the power con-

sumption of EEGu2 is critical. Table 2 lists the measured power
consumption of EEGu2 components. When system is idle (DAQ
board idle, BBB idle), EEGu2 consumes 1219.5mW in which the
cape consumes only 69.5mW. When running the DAQ driver (DAQ
board busy) and DevClass-Remote for data streaming to PC (BBB
busy), EEGu2 consumes 1951.2mW in total, that being 731.7mW
more in comparison to the idle state. BBB contributes 1850mW,
the majority of the overall power consumption due to embedded
acquisition and WiFi communication. The cape consumes only
101.2mW when operating signal acquisition.

EEGu2 is equipped with two Samsung Galaxy Note 3 lithium ion
battery, each with 3200mAh at 3.8V. This battery capacity trans-
lates to (2∗3200mAh∗3.8V )/1951.2mW = 12.46hour battery life
time.

Component Idle Power (mW) Busy Power (mW)
Cape 69.5 101.2

BeagleBone Black 1150 1850
Total 1219.5 1951.2

Table 2: EEGu2 Power Consumption

1 2 4 6 8 12 24

Vrms 0.88 0.46 0.26 0.20 0.17 0.15 0.13

Vpp 5.81 2.96 1.65 1.23 1.07 0.93 0.79
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Figure 12: Input Referred Noise over all Gain

3.1.2 Accuracy
We evaluate accuracy as signal-to-noise ratio (SNR) and input-

referred noise (noise flow). Experiments show an average 25dB
SNR over 10 trials, each of which contains 250x10 samples with
the gain of 24, sampled at 250Hz. In comparison, the commercial
DAQ product, g.USBamp ($15k) shows 21.35dB SNR with hard-
ware filter off and 24.61dB SNR with hardware filter on (1-30Hz).

To quantify the internal noise in AFE analog circuit, we ana-
lyze the input-referred noise (IRN) with short positive and nega-
tive analog inputs. Experiment shows 0.785µV Vpp (peak to peak)
and 0.126µV Vrms (root mean square) input referred noise under
the test configuration as reported in ADS1299 manual, 1000 sam-
ples at gain of 24 sampled and 250Hz sampling frequency with a
0.01Hz-70Hz bandpass filter applied. This measure IRN of EEGu2
is slightly smaller than 0.98µV Vpp and 0.14µV Vrms reported in
ADS1299 manual. Fig. 12 depicts the trend of decreasing IRN with
larger channel gain setting (equivalently reducing internal noise).
This indicates the analog noise is injected after the amplification.

3.2 Firmware Quality
We assess quality in terms of real-time and end-to-end delay.

3.2.1 AFE Communication Real-time Analysis
Fig. 13 depicts the AFE communication protocol reading sam-

ples from AFE. When DRDY signals data being available on the
AFE chip, the processor reads data via SPI. AFE periodically gen-
erates new data overwriting old data, which imposes a hard real-
time constraint, i.e. a deadline of reading samples within a sam-
pling period. Since the SPI transaction takes fixed time (at a clock
rate), the response time tdelay from DRDY to SPI read, is critical.
OS scheduling contributes to this latency in that the processor may
prioritize other processes.

Fig. 14 illustrates the cumulative distribution (CDF) of DRDY
to CS delay in both kernel driver and user driver (the initially de-
veloped driver in user space only). Each driver is evaluated with
and without additional system load (4 dummy applications of busy
loops). The sampling frequency is set to 250Hz (4ms deadline). In
Fig. 14, The x-axis is the delay time and y-axis shows the cumu-
lative percentage of samples with a smaller delay. The user driver
performance deteriorates rapidly with system load. Without system
load, the delay of 90% samples ranges from 20µs to 40µs. How-
ever, the maximal delay of 4488µs indicates sample lost. When
system loaded, more than 50% of the samples fail 4ms deadline due
to the driver competing with other user processes for OS schedul-
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Figure 14: EEGu2 AFE Real-time Analysis

ing. Hence, this user driver is not useable.
In contrast, kernel driver shows an average delay of 189.40µs la-

tency with system load and 287.22µs otherwise (see Table 3). The
two tight curves indicate that the kernel driver is independent of
the system load due to the higher priority of kernel process than
user processes. Note that kernel driver even exhibits a better per-
formance with system load because of the BBB frequency scal-
ing (lower frequency when idle). Interestingly enough, the kernel
driver average delay is much larger than the user driver. The addi-
tional delay of kernel driver results from the overhead of IIO sub-
systems, e.g. the two-level interrupt handling. Since the maximal
delay of kernel driver is 520µs at full processor speed, the sampling
rate can go up to 1KHz without failing the real-time requirement.

Latency (Unit: µs) Mean STD Max
Kernel Driver w/o Load 287.22 37.84 626.00
Kernel Driver w/ Load 189.40 22.51 520.00
User Driver w/o Load 74.44 353.92 4488.00
User Driver w/ Load 4229.05 3805.45 20756.00

Table 3: EEGu2 AFE Real-time Analysis

3.2.2 Firmware End-to-End Delay
End-to-end delay measures the delay from the time an analog

signal appears at the input to the time the sample can be read at
the DAQ HW API. This response time of EEGu2 evaluates how
fast the EEGu2 responds to the environment (input change). The
experiment result shows 10.7ms and 12.3ms for end-to-end delay
of user driver (no system load) and kernel driver respectively. The
additional delay of kernel driver stems from the IIO overhead, in-
cluding interrupt handling and data buffering. While the end-to-end
delay indicates the warm-up latency when acquisition starts, the
kernel driver can keep up with up to 1KHz sampling (1ms period)
during the data streaming (see Section 3.2.1).

3.3 Demo: BCI Speller

3.3.1 Application
People with locked-in syndrome (LIS) can benefit from reliable

assistive systems that help them regain their independence. De-
spite the loss of verbal communication and motor control, LIS in-
dividuals are fully conscious and aware of their surroundings. We
developed a BCI speller using EEGu2 to help LIS individuals re-
gain verbal communication. BCIs based on the steady state visually
evoked potential (SSVEP) paradigm use the fact that focusing on
a steadily flashing LED results in visual cortex EEG signals with
the dominant frequency of the flickering and its harmonics [13].
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By pairing multiple LEDs (with different illumination patterns) to
system actions (e.g. choosing a letter from the alphabet), the user’s
intent can be extracted by estimating the frequency of the attended
stimuli from EEG.

Our application is executed in two stages: calibration/training
and running. In the training stage, the software learns the EEG pat-
tern when users focusing on each LED array. The physiological
information is represented as canonical correlation scores between
the EEG (20 4-second trials per stimuli) and linear combinations
of sinusoids at the stimulus frequencies. This supervised learning
is used to build a probability distribution of EEG evidence given
the attended stimuli. In the running stage, the user is shown 4
icon boxes of letters associated with 4 LED arrays (8.1, 9.2, 10.3,
and 11.4 Hz) respectively. The user can type by visually focus-
ing on the flashing LED array that corresponds the desired letter
(Fig. 15). The system will query the user in the minimum number
of trials needed to achieve a confident decision (beyond a configu-
ration threshold usually set to 0.85). The letter with the maximum
posteriori inference will be chosen as the most probable one given
all physiological (EEG) evidence. More details about the spelling
application can be found in [14].

Figure 16: CCA Likelihood

The application algorithm is initially developed in MATLAB
with the benefit of its algorithm development environment. EEGu2
records EEG and streams it to MATLAB for processing. Using
the HiLCPS Framework, the application has hardware and loca-
tion transparent access to EEGu2. Once the algorithm is validated
in MATLAB, the application is automatically synthesized to C++
through domain-specific synthesis, which seamlessly interfaces with
EEGu2 firmware. Since the interested EEG frequency is between
1 to 45Hz, EEGu2 is set to the lowest sampling frequency 250Hz
for power saving and higher accuracy. Fig. 16 shows the confusion
matrix as estimated via 10-fold cross validation. The confusion
matrix shows how each frequency gets confused with others. The
y-axis lists the ground truth and x-axis lists the estimates. The ma-
trix shows the performance of the estimation. A diagonal matrix
means the perfect performance. The results show an average of
90% accuracy in the intent inference process.

4. RELATED WORK



Commercial off-the-shelf DAQs are available on the market. The
g.USBamp [15] is a high-end bio-signal acquisition system (cost
about $15K) with 24 bits resolution and 16 channels. Companies
like Emotive [16] and Neurosky [17] provide affordable low-end
bio-signal acquisition devices mostly for gaming. Neurosky pro-
vides one channel EEG DAQ with 12-bit resolution at only $99.
Emotive offers products such as EPOC+ with 14-channel 16-bit
acquisition. With education license and raw data access permit,
EPOC+ costs $3K. However, none of the above mentioned DAQs
provides embedded processing accessible to users. In contrast, our
EEGu2 is an affordable, battery powered bio-signal acquisition and
processing system. EEGu2 provides 16-channel, 24-bit acquisition
(equivalent to high-end g.USBamp) at only $600 for prototype and
$400 for 1K unit production.

OpenBCI [7] offers an open source platform for BCI. The Open-
BCI also uses ADS1299 for acquisition. OpenBCI supports up to
16 channels by stacking a slave board over the master board (daisy
chaining two ADS1299 with identical configuration). OpenBCI
contains an on-board microcontroller (50MHz PIC32MX250F128B
) used only for data transmission, while a computer is still needed
for data processing. In comparison to OpenBCI, our EEGu2 in-
tegrates two ADS1299 that can support independent channel and
sampling frequency configuration through two dedicated SPIs. Fur-
thermore, EEGu2 offers much more powerful processing capabil-
ity by using BBB (ARM Cortex-A8). The sufficient processing
capability and the battery power supply enables a rapid embedded
deployment of BBCI applications.

5. CONCLUSION
EEGu2, to our knowledge, is the first open embedded platform

for both body/brain signal acquisition and embedded processing
with mobile operations. As a modular design, EEGu2 comprises
a customized cape on top of BBB, offering the 16-channel, 24-
bit acquisition and powerful processing capability. The intelligent
power management allows up to 12 hours battery operation. The
results show the accuracy of EEGu2 acquisition (25dB SNR) com-
petitive with state-of-the-art commercial DAQ (e.g. g.USBamp),
while at a much lower cost ($400 vs $15K). In addition, the em-
bedded processing of EEGu2 allows an embedded deployment of
BBCI applications. The EEGu2 firmware is integrated into our
HiLCPS Framework that enables the hardware and location trans-
parent access via the MATLAB interface. This transparency sim-
plifies the algorithm development in MATLAB, and most impor-
tantly, the prototyped BBCI application in MATLAB can be auto-
matically deployed onto EEGu2 through domain-specific synthe-
sis, dramatically increasing the productivity. We show the benefit
of EEGu2 with a speller application. The results show an average
of 90% accuracy in the intent inference process.

Future work aims to further improve the real-time response, as
well as reducing cost and size.
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for continuous control of robots. Clinical Neurophysiology,
119(9):2159–2169, September 2008.

[6] Umut Orhan. RSVP KeyboardTM : An EEG Based BCI
Typing System with Context Information Fusion. Ph.D.,
Northeastern University, United States – Massachusetts,
2013.

[7] OpenBCI. OpenBCI: Dedicated to open-source innovation of
human-computer interface technologies.
http://www.openbci.com/, 2016.

[8] Gunar Schirner, Deniz Erdogmus, Kaushik Chowdhury, and
Taskin Padir. The Future of Human-in-the-loop Cyber
Physical Systems. IEEE Computer, 46(1):1–8, 2013.

[9] Texas Instruments Incorporated. ADS1299: Low-Noise,
8-Channel, 24-Bit Analog Front-End for Biopotential
Measurements. http://www.ti.com/product/ADS1299, 2016.

[10] Shen Feng, Fernando Quivira, and Gunar Schirner.
Framework for rapid development of embedded
human-in-the-loop cyber-physical systems. In IEEE 16th
International Conference on BioInformatics and
BioEngineering, 2016.

[11] ISO - International Organization for Standardization. IEC
60601-1-11:2015. http://www.iso.org/, 2016.

[12] Analog Devices, Inc. Linux Industrial I/O Subsystem.
https://wiki.analog.com/software/linux/docs/iio/iio, 2016.

[13] Danhua Zhu, Jordi Bieger, Gary Garcia Molina, and
Ronald M. Aarts. A Survey of Stimulation Methods Used in
SSVEP-based BCIs. Intell. Neuroscience, 2010:1:1–1:12,
January 2010.

[14] M. Higger, F. Quivira, M. Akcakaya, M. Moghadamfalahi,
h nezamfar, M. Cetin, and D. Erdogmus. Recursive Bayesian
Coding for BCIs. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, PP(99):1–12, 2016.

[15] G.TEC MEDICAL ENGINEERING GMBH. g.USBamp -
gtec highest accuracy biosignal data acquisition and
processing system. http://www.gtec.at/, 2016.

[16] Emotiv, Inc. Emotiv EPOC / EPOC+. https://emotiv.com/,
2016.

[17] NeuroSky. EEG and ECG Biosensor Solutions.
http://neurosky.com/, 2016.

http://www.openbci.com/
http://www.ti.com/product/ADS1299
http://www.iso.org/
https://wiki.analog.com/software/linux/docs/iio/iio
http://www.gtec.at/
https://emotiv.com/
http://neurosky.com/

